Answer:
x = ±i(√6 / 2)
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
<u>Algebra II</u>
Imaginary root i
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
2x² + 3 = 0
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Subtraction Property of Equality] Subtract 3 on both sides: 2x² = -3
- [Division Property of Equality] Divide 2 on both sides: x² = -3/2
- [Equality Property] Square root both sides: x = ±√(-3/2)
- Simplify: x = ±i(√6 / 2)
Answer:
sup
Step-by-step explanation:
Answer:
V = −1
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
3=−2v−v
3=−2v+−v
3=(−2v+−v)(Combine Like Terms)
3=−3v
3=−3v
Step 2: Flip the equation.
−3v=3
Step 3: Divide both sides by -3.
<u>−3v</u> = <u>3</u>
-3 -3
v=−1
Answer: 6 - 5
<u>Step-by-step explanation:</u>
|z - 6| - |z - 5| ; z < 5
Since z < 5, then
|z - 6| will be the absolute value of a negative number. Replace the absolute value with a negative and parentheses:
-(z - 6) = -z + 6
|z - 5| will be the absolute value of a negative number. Replace the absolute value with a negative and parentheses:
-(z - 5) = -z + 5
Now subtract them without the absolute value signs:
-z + 6 - (-z + 5)
Distribute the negative sign:
-z + 6 + z - 5
-z + z = 0 which leaves:
6 - 5