1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BigorU [14]
3 years ago
8

What is the formula for calculating the force and acceleration of an object?{physical science}:)

Physics
1 answer:
taurus [48]3 years ago
4 0
Force on an object = (its mass) times (its acceleration)
You might be interested in
Need asap!
Genrish500 [490]

Answer:

3.0 A Is the correct option

Explanation:

I = V / R

I = 12/ 4

= 3

7 0
2 years ago
5. A car accelerates from 0 to 72 km/hour in 8.0 seconds. What is the car's acceleration?
MA_775_DIABLO [31]

Answer:

2.5 m/s

Explanation:

There are calculators online that can help you easily calculate the accerlation.

8 0
2 years ago
A 1900kg car starts from rest and drives around a flat 65-m-diameter circular track. The forward force provided by the car's dri
s344n2d4d5 [400]

Answer:

The\quad magnitude\quad of\quad the\quad car's\quad acceleration\quad at\quad t=13s\quad \quad =2.52m/{ s }^{ 2 }\\ The\quad direction\quad of\quad the\quad car's\quad acceleration\quad at\quad t=13s\quad =15.{ 72 }^{\o}\\The\quad car\quad begins\quad to\quad slide\quad out\quad \quad of\quad the\quad circle\quad after\quad 26.09s.\quad \quad \quad \quad

Explanation:

8 0
2 years ago
What is the starting and final energy for a battery?
EleoNora [17]
Electrical energy is the starting and final energy of a battery
8 0
2 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
Other questions:
  • The difference in ________ of p and s waves provides a method for determining the epicenter of an earthquake.
    7·1 answer
  • A car skids to a stop. What happens to its kinetic energy?
    9·1 answer
  • Find the mean and median of the following data set: 98, 87, 92, 79, 65, 91, 80, 92, 85, 86.
    11·1 answer
  • At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 22 knots and ship B is sailing north at 23 kn
    13·1 answer
  • n object is undergoing uniform circular motion. Which of the following is/are true? I. The object is moving at constant velocity
    6·1 answer
  • A 1.6 kg bicycle wheel with a radius of 0.31 m turns at a constant angular speed of 27 rad/s when a(n) 0.33 kg reflector is at a
    5·1 answer
  • A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.90 s. Then security
    10·1 answer
  • Students have 4 different pairs of sunglasses, each with lenses where the polarization filter is oriented in different direction
    13·1 answer
  • How many grams are in 5 kilos​
    6·2 answers
  • You jump into a swimming pool on a day when the air temperature is 100°F and the water is 80°F. Which statement correctly descri
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!