First one, holding a basketball in the air. Potential energy is the energy it has mostly from gravity. The further you go from the center of mass, the more energy.
Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!
Answer:
4.96×10¯¹⁰ N
Explanation:
The following data were obtained from the question:
Mass 1 (M1) = 300 Kg
Mass 2 (M2) = 300 Kg
Separating distance (r) = 110 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Gravitational force (F) =?
The gravitational force between the two goal posts can be obtained as follow:
F = GM1M2 / r²
F = 6.67×10¯¹¹ × 300 × 300 / 110²
F = 6.003×10¯⁶ / 12100
F = 4.96×10¯¹⁰ N
Therefore the gravitational force between the two goal posts is 4.96×10¯¹⁰ N
Answer:
4.2 x 10⁷N
Explanation:
Given parameters:
Charge on ball:
q₁ = 3C
q₂ = 14C
Distance between balls = 9000m
Unknown:
Force acting on the two balls
Solution:
The force experienced by the two charges is given by coulombs law. It is mathematically expressed as;
F = 
where k = 9 x 10⁹Nm²/C²
q is the charges
r is the distance
Input the variables and solve;
F =
= 4.2 x 10⁷N