140 s. It would take 140 s to swim 0.150 mi
.
<em>Step 1</em>. Convert the <em>time to seconds</em>
Time = 14 min × (60 s/1 min) + 34.56 s = 840 s + 34.56 s = 874.56 s
<em>Step 2</em>. Convert <em>miles to metres
</em>
Distance = 0.150 mi × (1609.3 m/1 mi) = 241.4 m
<em>Step 3.</em> Calculate the <em>time to swim 241.4 m</em>
Time = 241.4 m × (874.56 s/1500 m) = 140 s
(<em>As of 2012, the men’s freestyle record for 1500 m was 14:31.02</em>.)
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Answer:
The difference between a cation and an anion is the net electrical charge of the ion. Ions are atoms or molecules which have gained or lost one or more valencee electron giving the ion a net positive or negative charge. Cations are ions with a net positive charge.
Explanation: