The time taken by Carbon-14 to decay radioactively from 120g to 112.5g is 22,920 years.
<h3>How do we calculate the total time of decay?</h3>
Time required for the whole radioactive decay of any substance will be calculated by using the below link:
T = (n)(t), where
- t = half life time = 5730 years
- n = number of half life required for the decay
Initial mass of Carbon-14 = 120g
Final mass of Carbon-14 = 112.5g
Left mass = 120 - 112 = 7.5g
Number of required half life for this will be:
- 1: 120 → 60
- 2: 60 → 30
- 3: 30 → 15
- 4: 15 → 7.5
4 half lives are required, now on putting values we get
T = (4)(5730) = 22,920 years
Hence required time for the decay is 22,920 years.
To know more about radioactive decay, visit the below link:
brainly.com/question/24115447
#SPJ1
Answer:
False
Explanation:
Some substances don't have to be
Answer:
D. Positively charged particles
Explanation:
Negatively charged particles are attracted to positively charged particles and repelled against negatively charged particles
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.

Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply
by 2 on reactant side. Also, multiply
by 2 on product side. Hence, the equation can be rewritten as follows.

Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Answer:
hope this helps have a amazing day! :)
Explanation:
Metals are an excellent conductor of electricity and heat because the atoms in the metals form a matrix through which outer electrons can move freely. Instead of orbiting their respective atoms, they form a sea of electrons that surround the positive nuclei of the interacting metal ions.