Answer:
This question is somehow not clear, because a typical human eye can notice objects which have wavelengths from about 380 to 740 nanometers. This is called visible spectrum (the portion of the electromagnetic spectrum that is visible to the human eye). Electromagnetic radiation in this range of wavelengths is called visible light or simply light.
Someone even can see extra colors - they able to see beyond the visible spectrum. The reason that the human eye can see the spectrum is because those specific wavelengths stimulate the retina in the human eye. The human retina can only detect incident light that falls in waves from about 380 to 740 nanometers long, so we can’t see microwave or ultraviolet wavelengths. This also applies to infrared lights which has wavelengths longer than visible and shorter than microwaves, thus being invisible to the human eye.
In conclusion, the human eye can not notice that objects with wavelength not in the range of 380 to 740 nanometers.
Explanation:
Explanation:
Tc - 99 is technetium 99.
It is a radioactive element that decays spontaneously. It has a half-life of 211,000 years and decays to stable ruthenium.
- On the periodic table, it has an atomic number of 43;
Mass number = 99
Atomic number = number of protons = number of electrons in atom
Number of protons in Tc is 43
electron is 43
Mass number = number of protons + number of neutrons
Number of neutrons = mass number - number of protons = 99-43 = 56
learn more:
Atomic number brainly.com/question/2057656
#learnwithBrainly
The correct answer is option d, that is, the solubility of a solid is highly dependent on temperature.
Solubility refers to the maximum amount of a component, which will get dissolved in a given concentration of solvent at a particular temperature. The temperature influences the solubility of both gases and solids. The temperature has a direct influence on solubility.
For most of the ionic solids, enhancing the temperature elevates how briskly the solution can be formed. With the increase in temperature, the movement of the solid particles takes place briskly that enhances the chances that they will associate with the majority of the solvent particles. This leads to enhancing the rate at which the solution takes place.