Answer:
C.
The air pressure creates a vacuum in the straw that pulls the air into the liquid.
Answer:
naoh is called sodium hydroxide,
Explanation:
hope this helps
Answer:
The volume of CO2 produced is 6.0 L (option D)
Explanation:
Step 1: Data given
Volume of oxygen = 3.0 L
Carbon monoxide = CO = in excess
Step 2: The balanced equation
2 CO (g) + O2 (g) → 2 CO2 (g)
Step 3: Calculate moles of O2
1 mol of gas at STP = 22.4 L
3.0 L = 0.134 moles
Step 3: Calculate moles of CO2
For 2 moles CO we need 1 mol of O2 to produce 2 moles of CO2
For 0.134 moles O2 we'll have 2*0.134 = 0.268 moles CO2
Step 4: Calculate volume of CO2
1 mol = 22.4 L
0.268 mol = 22.4 * 0.268 = 6.0 L
The volume of CO2 produced is 6.0 L
Answer:
The volume will be 568.89 mL.
Explanation:
Boyle's law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. That is, the pressure of the gas is directly proportional to its temperature. Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
Finally, Charles's law indicates that as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. In summary, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Studying an initial state 1 and a final state 2, it is fulfilled:

In this case:
- P1= 960 mmHg
- V1= 550 mL
- T1= 200 C= 473 K (being 0 C=273 K)
- P2= 830 mmHg
- V2= ?
- T2= 150 C= 423 K
Replacing:

Solving:

V2= 568.9 mL
<u><em>The volume will be 568.89 mL.</em></u>