- From the general law of gases: PV = nRT,
where P is the pressure (atm),
V is the volume (L),
n is the number of moles,
R is the general gas constant (8.314 L.atm/mol.K),
T is the temperature in Kelvin
- at constant volume of the gas: P1T2 = P2T1
P1 = 3.20 atm, T1 = 300 K, T2 = 290 K, P2 = ??
(3.20 atm)(290 K) = P2(300 K)
P2 = (3.20 atm)(290 K)/ (300 K) = 3.093 atm
To Find :
The volume of 12.1 moles hydrogen at STP.
Solution :
We know at STP, 1 mole of gas any gas occupy a volume of 22.4 L.
Let, volume of 12.1 moles of hydrogen is x.
So, x = 22.4 × 12.1 L
x = 271.04 L
Therefore, the volume of hydrogen gas at STP is 271.04 L.
I don't know if this will help but here are some chemical properties of acids and bases :
taste: sour (vinegar)
base: bitter (baking soda)
smell: frequently burns nose
base: usually no smell (except NH3)
texture: sticky
base: slippery
reactivity: frequently react with metals to form H2
base: react with many oils and fats
The melting point would decrease
Answer:
In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.
Explanation: