Answer:
Explanation:
molar volume at STP=22.4 L
given volume=50.0 L
number of moles=given volume/molar volume
number of moles=50.0/22.4
number of moles=2.2
1 mole of helium =6.023*10^23 atoms
2.2 moles of helium =6.023*10^23*2.2=1.3*10^24
therefore 50.0 L of helium contain 1.33*10^24 atoms
Answer:
exothermic reaction
Explanation:
If there is a drop in temperature, then energy was lost to the surroundings because temperature is the average measure of kinetic energy. An exothermic reaction would result in this lost of energy. An endothermic reaction would absorb energy and make the temperature rise.
Question:
At standard temperature and pressure, the volume of a tire is 3.5L. What is the new pressure if the temperature outside is 296k and its weight causes the volume of the gas is 2.0 L?
Answer:
The new pressure is: 1.896 atm
Explanation:
At standard temperature and pressure, we have:



Outside, we have:


Required
Determine the new pressure
Using combined gas law, we have:

This gives:

Solve for 



Answer:
2.7 °C.kg/mol
Explanation:
Step 1: Calculate the freezing point depression (ΔT)
The normal freezing point of a certain liquid X is-7.30°C and the solution freezes at -9.9°C instead. The freezing point depression is:
ΔT = -7.30 °C - (-9.9 °C) = 2.6 °C
Step 2: Calculate the molality of the solution (b)
We will use the following expression.
b = mass of solute / molar mass of solute × kilograms of solvent
b = 102. g / (162.2 g/mol) × 0.650 kg = 0.967 mol/kg
Step 3: Calculate the molal freezing point depression constant Kf of X
Freezing point depression is a colligative property. It can be calculated using the following expression.
ΔT = Kf × b
Kf = ΔT / b
Kf = 2.6 °C / (0.967 mol/kg) = 2.7 °C.kg/mol