Hence, the horizontal velocity of the rover is 1.73 m/s
Most mirrors are plane mirrors that have a flat reflective surface. A plane mirror forms only virtual, right-side up, and life-sized images. A concave mirror is shaped like the inside of a bowl.
The gravitational potential energy of an object of mass m at height h on earth is given by PEg=mgh
Answer:
Explanation:
We shall write the velocities given in vector form to make the solution easy.
The velocity of water with respect to earth that is waV(e) makes 30 degree with north or 60 degree with east so in vector form
waV(e) = 2.2 cos 60 i + 2.2 sin 60 j
waV(e) = 1.1 i + 1.9 j
Similarly , velocity of wind with respect to earth that is wiV(e) , is making 50 degree with west or - ve of x axes so we cal write it in vector form as follows
wiV(e) = - 4.5 cos 50 i - 4.5 sin 50 j
wiV(e) = - 2.89 i - 3.45 j
Now we have to calculate velocity of wind with respect to water that is
wiVwa
wiV( wa) = wiV ( e)+ eV(wa)
= wiV( e)- waV(e)
- 2.89 i - 3.45 j - 1.1 i - 1.9 j
= - 3.99 i - 5.35 j
Magnitude of this relative velocity
D² = 3.99² + 5.35²
d = 6.67 m /s
Answer:
equilibrium position.
Explanation:
In simple harmonic motion , velocity v(t) is given by,
v(t) = -ω A sin(ωt + φ)
where
ω = angular velocity of the corresponding circular motion
A = amplitude
t = time
φ = the initial angle of the corresponding circular motion when the motion begin.
v (t) get maximized when sin value is maximized , i.e. sin
=1
The particle has maximum speed when it passes through the equilibrium position.