Answer:
A+B+C= 135
A-B-C= 45
C-A-B= -85
Explanation:
you have very nice penmanship pls give brainliest
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
Answer: Radiation
Explanation:
There are three ways in which the thermal transfer occurs:
1. By Conduction, when the transmission is by the <u>direct contact</u>.
2. By Convection, heat transfer <u>in fluids </u>(like water or the air, for example).
3. By Radiation, by the <u>electromagnetic waves</u> (they can travel through any medium and in <u>vacumm</u>)
So, in the outter space is vacuum, this means the energy cannot be transmitted by convection, nor conduction. It must be transmitted by electromagnetic waves that are able to travel with or without a medium, and this is called radiation.
Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.
Answer:
Lift is the upward force on the wing acting perpendicular to the relative wind and perpendicular to the aircraft's lateral axis. Lift is required to counteract the aircraft's weight.
Explanation: