Answer:
388.97 nm
Explanation:
The computation of the wavelength of this light in benzene is shown below:
As we know that
n (water) = 1.333
n (benzene) = 1.501

And, the wavelength of water is 438 nm
![\lambda (benzene) = \lambda (water) [\frac{n(water)}{n(benzene}]](https://tex.z-dn.net/?f=%5Clambda%20%28benzene%29%20%3D%20%5Clambda%20%28water%29%20%5B%5Cfrac%7Bn%28water%29%7D%7Bn%28benzene%7D%5D)
Now placing these values to the above formula
So,

= 388.97 nm
We simply applied the above formula so that we can easily determine the wavelength of this light in benzene could come
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
Answer:
30°
Explanation:
According to the second law of reflection, it States that the angle of incidence i is equal to the angle of reflection r.
The angle of incidence is known to be the angle between the incident ray and the normal.
The Angle of reflection is the angle between the reflected ray and the normal.
This normal ray is a ray that is perpendicular to the surface.
According to the question, if the beam of light is reflected off the surface and its angle of incidence is 30°, its angle of reflection will also be 30° i.e i=r = 30°
Answer:
Moon slowly moves eastward, rising later each day and passing through its phases:
Explanation: