It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Na-24 (Sodium, atomic number Z = 11, mass number A = 24).
Answer:
Mass fraction = 0.08004
Mole fraction = 0.0377
Explanation:
Given, Mass of NaOH = 8.70 g
Mass of solution = 8.70 + 100 g = 108.70 g
= 0.08004
Molar mass of NaOH = 39.997 g/mol
The formula for the calculation of moles is shown below:
Thus,

Given, Mass of water = 100 g
Molar mass of water = 18.0153 g/mol
The formula for the calculation of moles is shown below:
Thus,

So, according to definition of mole fraction:
Percentage Yield = (Actual Yield ÷ Theoretical Yield) × 100
∴ if theoretical yield is 26 g, but only 22.0 is recovered from the reaction,
then Percentage Yield = (22 g ÷ 26 g) × 100
= 84.6 %
I can help, pm me and i will help you on there if that's alright?
Answer:
67.1%
Explanation:
Based on the chemical equation, if we determine the moles of sodium carbonate, we can find the moles of NaHCO₃ that reacted and its mass, thus:
<em>Moles Na₂CO₃ - 105.99g/mol-:</em>
6.35g * (1mol / 105.99g) = 0.0599 moles of Na₂CO₃ are produced.
As 1 mole of sodium carbonate is produced when 2 moles of NaHCO₃ reacted, moles of NaHCO₃ that reacted are:
0.0599 moles of Na₂CO₃ * (2 moles NaHCO₃ / 1 mole Na₂CO₃) = 0.1198 moles of NaHCO₃
And the mass of NaHCO₃ in the sample (Molar mass: 84g/mol):
0.1198 moles of NaHCO₃ * (84g / mol) = 10.06g of NaHCO₃ were in the original sample.
And percent of NaHCO₃ in the sample is:
10.06g NaHCO₃ / 15g Sample * 100 =
<h3>67.1%</h3>