Answer:
41.17g
Explanation:
We are given the following parameters for Flourine gas(F2).
Volume = 5.00L
Pressure = 4.00× 10³mmHG
Temperature =23°c
The formula we would be applying is Ideal gas law
PV = nRT
Step 1
We find the number of moles of Flourine gas present.
T = 23°C
Converting to Kelvin
= °C + 273k
= 23°C + 273k
= 296k
V = Volume = 5.00L
R = 0.08206L.atm/mol.K
P = Pressure (in atm)
In the question, the pressure is given as 4.00 × 10³mmHg
Converting to atm(atmosphere)
1 mmHg = 0.00131579atm
4.00 × 10³ =
Cross Multiply
4.00 × 10³ × 0.00131579atm
= 5.263159 atm
The formula for number of moles =
n = PV/RT
n = 5.263159 atm × 5.00L/0.08206L.atm/mol.K × 296K
n = 1.0834112811moles
Step 2
We calculate the mass of Flourine gas
The molar mass of Flourine gas =
F2 = 19 × 2
= 38 g/mol
Mass of Flourine gas = Molar mass of Flourine gas × No of moles
Mass = 38g/mol × 1.0834112811moles
41.169628682grams
Approximately = 41.17 grams.
Answer:
Spraying perfume in one corner of the room and the smell travels to the other side of the room
Explanation:
Answer:
<u>Radiation is the transfer of energy by waves, and conduction is the transfer of heat through contact with air.</u>
Explanation:
Conduction is the transfer of thermal energy through direct contact. Radiation is the transfer of thermal energy through thermal emission.
Lets name the unknown metal as M. Cation would be M³⁺.
the molecular formula of the compound is M₂(SO₄)₃
the mass of one mole - (molar mass of M x2 + 3 x molar mass of SO₄²⁻)
= 2M + 96 x 3
= 2M + 288
In 1 mol if there's 72.07% of sulphate ,
then 72.07 % corresponds to 288 g
1 % is then - 288/72.07
100 % of the compound - 288/72.07 x 100
molar mass of the compound - 399.6 g/mol
mass of 2M - 399.6 - 288 = 111.6 g
molar mass of M - 111.6 /2 = 55.8 g/mol
the element with molar mass of 55.8 is Fe.
Unknown metal is iron(III) , Fe³⁺