1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cestrela7 [59]
3 years ago
15

Can you please answer qeastion

Physics
1 answer:
notsponge [240]3 years ago
8 0

Answer:

the mantel

Explanation:

yeeeeaaaaaaa

You might be interested in
if you crash your car how could you decrease the damage to you or the car using the concept of impulse
kotykmax [81]

Explanation:

Crumple zones are sections in cars that are designed to crumple up when the car encounters a collision. Crumple zones minimize the effect of the force in an automobile collision in two ways. By crumpling, the car is less likely to rebound upon impact, thus minimizing the momentum change and the impulse.

3 0
3 years ago
Which law describes how the Earth applies a gravitational force on the Moon, the Moon applies a gravitational force on Earth? *
nikdorinn [45]
The answer is Newton's 3rd Law. The reason why is because a force is a push or a pull that acts upon an object as a results of its interaction with another object. ... These two forces are called action and reaction forces and are the subject ofNewton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction.
3 0
3 years ago
Read 2 more answers
A black hole can be considered a star that has...
joja [24]
B is the answer...

mark brainliest

3 0
3 years ago
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
you should begin viewing a bacteria specimen with what objective lens? view available hint(s)for part g you should begin viewing
Sergio039 [100]
  • Some people view bacteria specimens with a 100x objective lens in order to see the smallest details.
  • Others may use a 10x objective lens for more general purposes, such as examining stained slides or pictures.
  • And still others may use a 40x objective lens to gain maximum resolution when viewing images of thick samples.

It is important to choose the appropriate magnification for your needs so that you can properly examine the specimen under study.

<h3>Why is the 100x objective lens necessary to see bacteria?</h3>
  • Bacteria must, of course, be viewed at the maximum magnification and resolution possible because to their small size.
  • Due to optical restrictions, this is approximately 1000x in a light microscope.
  • To improve resolution, the oil immersion method is performed. This calls for a unique 100x objective.

To learn more about bacterial specimen, visit:

brainly.com/question/1412064

#SPJ4

5 0
1 year ago
Other questions:
  • The pencil rotates about an axis perpendicular to the plane of the figure. which of the labeled points is the point that the axi
    9·2 answers
  • A wave has a wavelength of 9 mm and a frequency of 16 hertz. What is its speed?
    14·1 answer
  • When is the Sun's right ascension (RA) 6 hours?
    14·1 answer
  • Which of these is generally considered to have been discovered by Einstein?
    13·2 answers
  • A rigid tank initially contains 1.4 kg saturated liquid water at 200◦C. At this state, 25 percent of the volumeis occupied by wa
    14·1 answer
  • a 10kg flowerpot is suspended from the end of a horizontal strut by a cable attached at 30° above the horizontal. If the strut h
    15·1 answer
  • An asteroid has acquired a net negative charge of 149 C from being bombarded by the solar wind over the years, and is currently
    7·1 answer
  • Which of the following is a term for the process of rock being broken down into pieces by wind or moving water?
    7·2 answers
  • At what temperature is water the most compacted?
    6·1 answer
  • What is the difference between a sonic boom and a shock wave?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!