Answer:
x =4.5 10⁴ m
Explanation:
To find the distance that the particle moves we must use the equations of motion in one dimension and to find the acceleration of the particle we will use Newton's second law
m = 2.00 mg (1 g / 1000 ug) (1 Kg / 1000g) = 2.00 10-6 Kg
q = -200 nc (1C / 10 9 nC) = -200 10-9 C
Let's calculate the acceleration
F = ma
F = q E
a = qE / m
a = -200 10⁻⁹ 1000 / 2.00 10⁻⁶
a = 1 10² m / s²
Let's use kinematics to find the distance traveled before stopping, where it has zero speed (Vf = 0)
Vf² = Vo² -2 a x
0 = Vo² - 2 a x
x = Vo² / 2a
x = 3000²/ 2100
x =4.5 10⁴ m
This is the distance the particule stop, after this distance in the field accelerates in the opposite direction of the initial
Second part
In this case Newton's second law is applied on the y axis
F -W = 0
F = w = mg
E q = mg
E = mg / q
E = 2.00 10⁻⁶ 9.8 / 200 10⁻⁹
E = 9.8 10⁵ C
The direction of the field is such that the force on the particle is up, as the particle has a negative charge, the field must be directed downwards F = qE = (-q) E
Answer:
A
Explanation:
suddenly part of the force pulling to the left is gone.
and now the force pulling to the right is stronger.
so, the rope will move to the right. and that is also the direction of the net force.
Answer:
Vy = 26 m/s sin 30 = 13 m/s vertical speed
t = Vy / a = 13 m/s / 9.80 m/s^2 = 1.33 sec time to reach Vy = 0
H = Vy t + 1/2 g t^2
H = 13 m/s * 1.33 sec - 1.33^2 * 9.8 / 2 m = 8.62 m
Opening the valve allows more of the pressurized material out. If the area is decreased, less of the pressurized material is released, and its force ends up more spread out, reducing the pressure. Opening the valve will increase volume of transfer of your liquid.