To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So


Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,



Therefore the tension force in the cable is 10290.15N
Answer:
A. The sound wave will reflect off Buildings and automobiles.
Explanation:
This is because the sound waves would more likely propagate through diffraction through buildings and transmission through the air. It is also more likely to be absorbed by buildings than for multiple reflections to occur off buildings and automobiles. In the process of reflection, these materials would absorb the sound energy thereby reducing its ability to reflect.
Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation


QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
C . Record the time to complete a chemical reaction
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s