Answer:
<h2>Virtual image</h2>
Explanation:
<h3>
<em>Virtual</em><em> </em><em>image</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>caught</em><em> </em><em>on</em><em> </em><em>a</em><em> </em><em>screen</em></h3>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>brainliest</em><em>!</em>
<em>follow</em><em> </em><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em>
Explanation:
Distance travelled (d) = 56 metres
Time taken (t) = 7 seconds
velocity of the object (V)
= d / t
= 56 / 7
= 8 m/s
The velocity of the object is 8 m/s.
Hope it will help :)
Answer:
318.3 nm
Explanation:
We approximate the circular film as a cylinder of height h and radius, r. Its volume V = πr²h. Since this volume equals the volume of the oil drop, the height of the circular film is thus h = V/πr²
V = 10⁻¹⁰ m³ and r = 10 m
Substituting into h, we have
h = 10⁻¹⁰ m³/π(10)²
= 0.3183 × 10⁻¹² m
= 3183 × 10⁻⁹ m
= 318.3 nm
Answer:
the tempature and the map and climate
Explanation
Answer:
v₀ = 13.24 m / s
Explanation:
Let's use Newton's second law to find the average acceleration during the crash
F = m a
. a = F / m
a = 8000/73
a = 109.59 m / s²
Now we can use the kinematic equations to find the initial velocity, since when the velocity stops it is zero (v = 0)
v² = v₀² - 2 a x
v₀² = 2 a x
v₀ = √ 2 a x
v₀ = √ (2 109.59 0.80)
v₀ = 13.24 m / s