Answer:
Option D
MA=5
Explanation:
Mechanical advantage is the the ratio of the output force to the input force hence

Substituting 15 inches for the effort arm length and 3 inches for the load arm length then we obtain the mechanical advantage as
Answer:
0.82 MPa
Explanation:
the change in pressure 'σ'=160kPa
K= σ/∈
=> σ/3∈
K= 160/(3 x 0.065)
K=820 kPA=0.82 MPa
Thus,the bulk modulus of the tissue 'K' is 0.82 MPa
The mass of a planet determines the acceleration due to gravity on it. This is according to Newton's Law of Gravitation, which basically states that the more mass a body has, the greater the force of attraction it exerts on other bodies with mass near it.
The gravitational force is:
F = GMm/r², where G is a constant, r is the distance between large mass M and small mass m.
Considering the fact that acceleration is force per unit mass, if we divide gravitational force by the small mass (to get force per unit mass), we see the dependence mathematically:
a = GM/r²
Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision