Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Answer:
Adding heat makes the particles move faster so the particles have more kinetic energy when more thermal energy is added
Explanation:
Explanation:
If a metal rod of length L moves with velocity v is moving perpendicular to its length, in a magnetic field B, the induced emf is given by :

The electric field in the conductor is given by :

It is clear that the electric field is independent of the length of the rod. If the length of the rod is doubled, the electric field in the rod remains the same.
Answer:
A. The electric field points to the left because the force on a negative charge is opposite to the direction of the field.
Explanation:
The electric force exerted on a charge by an electric field is given by:
where
F is the force
q is the charge
E is the electric field
We see that if the charge is negative, q contains a negative sign, so the force F and the electric field E will have opposite signs (which means they have opposite directions). This is due to the fact that the direction of the lines of an electric field shows the direction of the electric force experienced by a positive charge in that electric field: therefore, a negative charge will experience a force into opposite direction.
The heat energy released from a piece of wire or any other section of a circuit is:
Energy = (voltage between its ends) x (current through it) x (time it's been going)