Answer:
317.52 mi/hr
Explanation:
First convert Meters into miles as the answer is required in miles/ h
1000m = 0.62 mi
Now, convert second into hours
7.45s = 0.0001 hr
The speed of the boat would be
v = 0.62/0.0001
=317.52 mi/hr
The answer for this question is negative externality
Answer:
Rotational inertia of the object is given as

Explanation:
As we know that the acceleration of the object on inclined plane is given as

now we know that velocity at any instant of time is given as

now we know that if the graph between velocity and time is given then the slope of the graph will be same as acceleration
so here we have

now from the graph slope of the graph is given as




now rotational inertia is given as



Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
Physics<span> is a natural science that involves the study of matter and its motion through space time, along with related concepts such as energy and force.</span>