Answer:
300K.
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 300L
Initial temperature (T1) = 200K
Final volume (V2) = 450L
Final temperature (T2) =..?
Since the pressure is constant, the gas is obeying Charles' law.
Using the Charles' law equation, we can obtain the new temperature of the gas as follow:
V1/T1 = V2/T2
300/200 = 450/T2
Cross multiply to express in linear form
300 x T2 = 200 x 450
Divide both side by 300
T2 = (200 x 450)/ 300
T2 = 300K
Therefore, the new temperature of the gas is 300K.
D) The broadest group of organization is known as the domain.
Answer:
C.3
13AL
2.8.3
The number of electrons from the outermost shell is the valence of the element.
Answer:
A decrease in [H3O+] and an increase in pH (option a)
Explanation:
Equilibrium of water is shown in this equation
2H₂O ⇄ H₃O⁺ + OH⁻
When you add NaOH, you are modifying [OH⁻]
NaOH → Na⁺ + OH⁻
In equilibrium of water, the [OH⁻] increases
2H₂O ⇄ ↓ H₃O⁺ + OH⁻ ↑
As the [OH⁻] increases, by Le Chatellier, the equilibrium tends to decrease [H₃O⁺].
If the [OH⁻] is higher, pH is also high so the solution of water and sodium hydroxide would be totally basic.
Answer:
I don't understand what to do with this