Answer:
An increase in temperature typically increases the rate of reaction because an increase in temperature will raise the average kinetic energy of the reactant molecules. Therefore, a greater proportion of molecules will have the minimum energy necessary for an effective collision.Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Explanation:
Can you please give this answer a brainliest answer please
Number of moles
Explanation:
From the general formula of ideal gas equation it is seen that number of moles is present and absent in other gas equations
Answer:
The percentage of N in the compound is 0.5088
Explanation:
Mass of compound = 8.75 mg = 8.75×1000 = 8750 g
Mass of N2 = number of moles of N2 × MW of N2 = 1.59 × 28 = 44.52 g
% of N in the compound = (mass of N2/mass of compound) × 100 = (44.52/8750) × 100 = 5.088×10^-3 × 100 = 0.5088
Newton's first law is the answer.
The original concentration of the acid solution is 6.175
10^-4 mol / L.
<u>Explanation:</u>
Concentration is the ratio of solute in a solution to either solvent or total solution. It is expressed in terms of mass per unit volume
HBr + NaOH -----> NaBr + H2O
There is a 1:1 equivalence with acid and base.
Moles of NaOH = 72.90
10^-3
0.25
= 0.0182 mol.
[ HBr ] = moles of base / volume of a solution
= 0.0182 / 29.47
= 6.175
10^-4 mol / L.