Answer:
Slowly changing to be slightly more evenly distributed based on humanitarian efforts. Still unevenly distributed leaving millions starving to death.
Explanation:
Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Answer:
The beaker holds 307.94 mL
Explanation:
As we know that the volume that beaker hold is the volume of water that occupied by it.
For this first we have to find mass of the water in the beaker
This can be calculated by the subtraction of beaker's weight from the weight of beaker and water.
weight of water (m) = total weight - weight of beaker
Empty weight of beaker = 25.91 g
Weight of beaker with water = 333.85 g
Weight of water = 333.85 - 25.91 = 307.94 g
Density of water = 1 g/mL
We have
Mass = Volume x density
307.94 = Volume x 1
Volume = 307.94 mL
The beaker holds 307.94 mL
Answer:
Explanation:
To calculate their average atomic masses which is otherwise known as the relative atomic mass, we simply multiply the given abundances of the atoms and the given atomic masses.
The abundace is the proportion or percentage or fraction by which each of the isotopes of an element occurs in nature.
This can be expressed below:
RAM = Σmₙαₙ
where mₙ is the mass of isotope n
αₙ is the abundance of isotope n
for this problem:
RAM of Li = m₆α₆ + m₇α₇
m₆ is mass of isotope Li-6
α₆ is the abundance of isotope Li-6
m₇ is mass of isotope Li-7
α₇ is the abundance of isotope Li-7