Nonfoliated is the answer I belive.. Hopefully
A. High intermolecular forces of attraction. If there are high intermolecular forces, the molecules will need large energies to escape into the liquid. The substance will nave a high melting point.
The other options are <em>incorrect </em>because they are <em>weak force</em>s. They would cause <em>low melting points</em>.
Answer:
a) The equilibrium will shift in the right direction.
b) The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Explanation:

a) Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
On increase in amount of reactant

If the reactant is increased, according to the Le-Chatlier's principle, the equilibrium will shift in the direction where more product formation is taking place. As the number of moles of
is increasing .So, the equilibrium will shift in the right direction.
b)

Concentration of
= 0.195 M
Concentration of
= 
Concentration of
= 
On adding more
to 0.370 M at equilibrium :

Initially
0.370 M
At equilibrium:
(0.370-x)M
The equilibrium constant of the reaction = 

The equilibrium expression is given as:
![K_c=\frac{[SbCl_3][Cl_2]}{[SbCl_5]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BSbCl_3%5D%5BCl_2%5D%7D%7B%5BSbCl_5%5D%7D)

On solving for x:
x = 0.0233 M
The new equilibrium concentrations after reestablishment of the equilibrium :
![[SbCl_5]=(0.370-x) M=(0.370-0.0233) M=0.3467 M](https://tex.z-dn.net/?f=%5BSbCl_5%5D%3D%280.370-x%29%20M%3D%280.370-0.0233%29%20M%3D0.3467%20M)
![[SbCl_3]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BSbCl_3%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
![[Cl_2]=(6.98\times 10^{-2}+x) M=(6.98\times 10^{-2}+0.0233) M=0.0931 M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2Bx%29%20M%3D%286.98%5Ctimes%2010%5E%7B-2%7D%2B0.0233%29%20M%3D0.0931%20M)
Answer: 75%
Explanation:
The following information can be gotten from the question:
Waste = 70kg
Theoretical yield = 280kg
Therefore, the actual yield will be the difference between the theoretical yield and the waste which will be:
= 280kg - 70kg = 210kg
The percent yield will now be:
= Actual yield / Theoretical yield × 100
= 210/280 × 100
= 3/4 × 100
= 75%