Answer: 46 or 46=4
Step-by-step explanation:
Do what's in the Parenthesis first so 7+2=10 which now give you the equation
[10x 5-4]=2+2
Now we Multiply so we do 10x5 which is 50 so that now gives us the equation[50-4]=2+2
Now we add the 2+2 which is 4 giving us the equation [50-4]=4
Now we subtract 50-4 giving 46
46=4
Plan A costs a total of $95 since it says $95 for unlimited talk and text.
Plan B:
(.10 x 800) + (.05 x 1000)
The (.10 x 800) represents 10 cents per talk minute for 800 minutes.
The (.05 x 1000) represents 5 cents per text message for 1000 text messages.
Solve:
.10 x 800 = 80
.05 x 1000 = 50
80 + 50 = 130
This means Plan B will cost him $130 under these conditions.
Plan C:
20 + ((.05 x 800)+(.05 x 1000))
The 20 + represents a flat rate of $20 per month.
The (.05 x 800) represents 5 cents per call minute.
The (.05 x 1000) represents 5 cents per text.
Solve:
.05 x 800 = 40
.05 x 1000 = 50
20 + 40 + 50 = 110
This means Plan C will cost him $110 under these conditions.
Plan D:
45 + (.10(800 - 500))
The 45 + represents a flat monthly rate of $45.
The (800 - 500) represents how many minutes he has to pay for with the 500 free.
The .10 is the cost per extra minute.
Solve:
800 - 500 = 300
.10 x 300 = 30
45 + 30 = 75
This means Plan D will cost him $75 under these conditions.
In short:
Plan A- $95
Plan B- $130
Plan C- $110
Plan D- $75
The least expensive among these is Plan D, which only costs $75 per month.
Answer:
3.75
Step-by-step explanation:
Answer:
Step-by-step explanation:
A. The first inequality is graphed as a shaded area below the solid line with x-and y-intercepts of 7.5 and 5, respectively. The second inequality is graphed as a shaded area above the solid line with x- and y-intercepts of 3.
The solution set is the set of integer-valued grid points one or between the lines.
__
B. The point (5, 1) is included in the solution area. Mathematically, it can be shown to satisfy the two inequalities:
2(5) +3(1) ≤ 15 ⇒ 13 ≤ 15 True
(5) +(1) ≥ 3 ⇒ 6 ≥ 3 True
__
C. The point (5, 1) is in the solution set. It means Michael can purchase 5 sandwiches and 1 hot lunch within his budget constraints. That will provide 6 meals, which is more than the minimum of 3 that he wants to provide.