Answer:
ghysdjoraiwiiwiwieidhdhdhdhd
sjjsjsndjdjd
djsi
First, we determine the energy released by the reaction using the heat capacity and change in temperature as such:
Q = cΔT
Q = 32.16 * 0.42
Q = 13.51 kJ
Next, we determine the moles of ammonia formed as the heat of formation is expressed in "per mole".
Moles = mass / molecular weight
Moles = 5/17
Moles = 0.294
Heat of formation = 13.51 / 0.294
The heat of formation of ammonia is 45.95 kJ/mol
There are no options so I'll just give my answer. Intermolecular hydrogen bonding is responsible for the high boiling point of water. The presence of hydrogen bonds can cause an anomaly in the normal succession of states of matter for certain mixtures of chemical compounds as temperature increases or decreases.
Air on a hot day translates to hot air and air on a cold day translates to cold air. The hot air usually have more energy due to particles being more excited by the heat.
P1: 741 mmHg
V1: 3.49 L P1 x V1 / P2= (741 mmHg) (3.49 L) / 760 mmHg = 3.40 L
P2: 760 mmHg
V2: ? L