Answer:
The equilibrium shifts to produce more reactants.
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2SO₂ + O₂ ⇄ 2SO₃
In this reaction the equilibrium is disturb by increasing the concentration of Product.
When the concentration of product is increased the system will proceed in backward direction in order to regain the equilibrium. Because when product concentration is high it means reaction is not on equilibrium state. As the concentration of SO₃ increased the reaction proceed in backward direction to regain the equilibrium state and more reactant is formed.
For snow to fall to the ground, the temperature must be cold both up in the clouds where snowflakes form, and down at ground level. If the air near ground level is too warm, the snow will melt on its way down, changing to rain or freezing rain. Moisture is needed to form clouds and precipitation.
The answer is 3). This is because elements are the simplest form of a substance, and cannot be broken down any further. Compounds on the other hand are much more complex than elements and can be broken down INTO elements.
For example, Na, sodium, is an element and cannot be broken down further. H2O, water, is a compound and can be broken down into Hydrogen and Oxygen.
Group 1 elements since they have one outermost electron which they can give to chlorine which has 7 outermost electrons in order to form a stable compound.
Example
Pottasium (K) + Chlorine (Cl) = Potassium Chloride (KCL)
382.85 Celsius is the temperature does 0.750 moles of an ideal gas occupy a volume of 35.9 L at 114 kPa.
Explanation:
Given data:
number of moles of the gas = 0.75 moles
volume of the gas = 35.9 liters
pressure of the gas = 114 KPa or 1.125 atm
R = 0.0821 latm/moleK
temperature of the gas T = ?
The equation used to calculate temperature from above data is ideal gas law equation.
the equation is :
PV = nRT
T = 
Putting the values in the above rewritten equation:
T = 
T = 655.9 K
To convert kelvin into celsius, formula used is
K = 273.15+ C
putting the values in the equation
C = 656 - 273.15
= 382.85 Celsius