The answer is 4z squared - 3z - 4
El mayor tamaño de los contenedores será de 160 litros.
Dado que una empresa elabora aceites de tres calidades distintas, y del primer aceite se elaboran 640 L, del segundo 800 L, y del tercero 480 L, si se quiere envasar el aceite en contenedores del mismo tamaño, sin mezclar los de distinto tipo, para determinar cuál será el mayor tamaño que puede tener el contenedor se debe realizar el siguiente cálculo, obteniendo el divisor mayor común de estos números:
- Así, en tanto 480, 640 y 800 son divisibles por 80, resta determinar si también lo son por 160.
- Entonces, dado que 480/160 es igual a 3, 640/160 es igual a 4 y 800/160 es igual a 5, el divisor mayor común de estos números es 160.
- Por ende, el mayor tamaño de los contenedores será de 160 litros.
Aprende más en brainly.com/question/24803913
Answer:
x = 2
Step-by-step explanation:

In an equation our aim is to find the value of what we are looking for as well as keeping the equation balanced. For example if we divided by 2 only from one side then the equation would change so it's an important rule to keep in mind when solving equations, that you need to keep both sides of the equation the same.

→ Expand the brackets

→ Multiply everything by 12 to make solving the equation easier
6x - 6 - 2x - 2 = 0
→ Simplify equation
4x - 8 = 0
→ Add 8 to both sides to isolate 4x
4x = 8
→ Divide by 4 on both sides to isolate x
x = 2
⇒ We can substitute x = 2 back into the equation to see if the solution is correct, if we get 0 on both sides then x = 2 is correct

⇒ Substitute in the values

⇒ Simplify

⇒ Simplify further

0 = 0
The solution x = 2 is correct
<span>Suppose a triangle had two right angles.
The sum of all angles of any triangle is 180</span>°.
The measure of a right angle is 90°.
By difference, the measure of the other angle can be determined.
Since the two angles have a measure of 90° each, then by difference, the measure of the third angle is 180° - (90° + 90°) = 0°.
If the angle is 0°, there would only be two sides.
A triangle has three sides.
Therefore, a triangle can't have two right angles.