Answer:
The partial pressure of oxygen in the mixture is 296 mmHg.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone.
This relationship is due to the assumption that there are no attractive forces between the gases.
So, in this case, the total pressure is:
PT=Phelium + Pnitrogen + Poxygen
You know:
- PT= 756 mmHg
- Phelium= 122 mmHg
- Pnitrogen= 338 mmHg
- Poxygen= ?
Replacing:
756 mmHg= 122 mmHg + 338 mmHg + Poxygen
Solving:
756 mmHg - 122 mmHg - 338 mmHg = Poxygen
Poxygen= 296 mmHg
<u><em>The partial pressure of oxygen in the mixture is 296 mmHg.</em></u>
Answer:
This law states that, despite chemical reactions or physical transformations, mass is conserved — that is, it cannot be created or destroyed — within an isolated system. In other words, in a chemical reaction, the mass of the products will always be equal to the mass of the reactants.
Explanation:
Answer:
the pressure of the gas in torr is 2280 torr
Explanation:
The pressure of a gas in torr can be calculated by converting its pressure in kPa to atmospheres and then converting the atmospheric pressure to torr.
One atmosphere is equal to 101.325 kPa. Therefore, the pressure of the gas in atmospheres is 305 kPa / 101.325 kPa/atm = 3.00 atm.
One torr is equal to 1/760 of an atmosphere. Therefore, the pressure of the gas in torr is 3.00 atm * 760 torr/atm = 2280 torr.
Therefore, the pressure of the gas in torr is 2280 torr
Answer:
A
Explanation:
A compound machine is a combination of two or more simple machines.
answer : the correct option is, (B) 2, 3 and 6.