<u>Answer:</u> The final temperature of water is 32.3°C
<u>Explanation:</u>
When two solutions are mixed, the amount of heat released by solution 1 (liquid water) will be equal to the amount of heat absorbed by solution 2 (liquid water)

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of solution 1 (liquid water) = 50.0 g
= mass of solution 2 (liquid water) = 29.0 g
= final temperature = ?
= initial temperature of solution 1 = 25°C = [273 + 25] = 298 K
= initial temperature of solution 2 = 45°C = [273 + 45] = 318 K
c = specific heat of water= 4.18 J/g.K
Putting values in equation 1, we get:
![50.0\times 4.18\times (T_{final}-298)=-[29.0\times 4.18\times (T_{final}-318)]\\\\T_{final}=305.3K](https://tex.z-dn.net/?f=50.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-298%29%3D-%5B29.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-318%29%5D%5C%5C%5C%5CT_%7Bfinal%7D%3D305.3K)
Converting this into degree Celsius, we use the conversion factor:


Hence, the final temperature of water is 32.3°C
What you have to do is find a periodic table and add the mass of each atom that the compound is made of.
Ca= 40.1
O= 16.0
H= 1.01
keep in mind that you have to also account for how many atoms of each there are in the molecule. for example, in Ca(OH)2, there are one Ca, two O and two H
so the molar mass of Ca(OH)2= 40.1 + (2 x 16.0) + (2 x 1.01)= 74.12 g/mol