Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions×
= 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄×
= <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!
<h3>Answer:</h3><h2>Equilibrium constants are changed if you change the temperature of the system. Kc or Kp are constant at constant temperature, but they vary as the temperature changes. You can see that as the temperature increases, the value of Kp falls.</h2>
Answer:
There will be one Al3+ ion.
There will be 3 NO3- ions
Explanation:
Dissociation equation:
Al(NO₃)₃ → Al³⁺ + 3NO₃¹⁻
When aluminium nitrate dissociate it produces one silver ion (Al³⁺) and three (NO₃¹⁻) ions.
Properties of Al(NO₃)₃:
It is inorganic compound having molecular mass 169.87 g/mol.
It is white odor less compound.
Its density is 4.35 g/mL.
Its melting and boiling points are 120°C and 440°C.
It is soluble in water.
It is sued to treat infections.
It is used in the photographic films.
It s toxic and must be handled with great care.
In that case, the salt<span> would be the </span>solvent<span> and the </span>water<span> the </span><span>solute.
So, it would be solution!
Have a nice day! :D</span>