The kinetic energy of toast is 0.06 J.
<u>Explanation:</u>
Kinetic energy is the way to determine the energy released when an object is in motion. In other times, it can be the energy required to move any object and to make it in motion.
As the mass of the toast is given as 8 g and speed is given as 15 m/s, if we ignore the friction caused by air molecules. Then the kinetic energy is the product of mass and square of velocity.
K.E. =
× mass × v²
Kinetic energy =
Since, the weight is given in grams , it needed to be converted into kg.
Kinetic energy = 0.06 J
Thus, the kinetic energy of toast is 0.06 J.
Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.
Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).
M = V d
M = 1.4 * 2 = 2.8 kg
Answer:
my name is Deepika Pandey anion I am 9 years old my father name is Dinesh Pandey my name is and my sister name is sister name is a
Answer: Diagram B
Explanation:
A free body diagram shows the forces acting on an object in a certain scenario.
In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.
The diagram depicting this is diagram B.