Answer:
Below:
Explanation:
Food balance sheet data are useful in monitoring trends in food consumption over time and in making rough comparisons between countries. Often, such data are the only data that can be readily obtained for the rapid evaluation of new problems.
Hope it helps...
It's Muska... :)
Answer:
The velocity of the other fragment immediately following the explosion is v .
Explanation:
Given :
Mass of original shell , m .
Velocity of shell , + v .
Now , the particle explodes into two half parts , i.e
.
Since , no eternal force is applied in the particle .
Therefore , its momentum will be conserved .
So , Final momentum = Initial momentum

The velocity of the other fragment immediately following the explosion is v .
Answer:
Part a)

Part b)

Explanation:
Part a)
Level of sound = 75 dB
now we know that

here we know that

now we have


Part b)
Intensity of sound wave is given as

here we know that

so we have


now we know



now we have


The ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
<h3 /><h3>What is the photoelectric effect?</h3>
When a medium receives electromagnetic radiation, electrostatically charged particles are emitted from or inside it.
The emission of ions from a steel plate when light falls on it is a common definition of the effect. The substance could be a solid, liquid, or gas; and the released particles could be protons or electrons.
A particular metal emits photoelectrons when exposed to light with energy three times its work function:

The ratio of the maximum photoelectron kinetic energy to the work function will be;

Hence, the ratio of the maximum photoelectron kinetic energy to the work function will be 3:1.
To learn more about the photoelectric effect refer to the link;
brainly.com/question/9260704
#SPJ1
5 times that of initial pressure i.e 1625 kpa