Answer:
Explanation:
We shall find first the velocity of ball at the time when string breaks. Let it be v . During its fall on the ground , 1.02 m below, we use the formula
h = 1/2 gt² where t is time of fall .
1.02 = 1/2 x 9.8 x t²
t²= .2081
t = .456
During this time it travels horizontally at distance of 2.5 m with uniform velocity of v
v x .456 = 2.5
v = 5.48 m /s
centripetal acceleration
= v² / r where r is radius of the circular path
= 5.48² / .478
= 62.82 m /s²
Answer:
Since both start with the same vertical velocity from the same position with the same acceleration they will reach the lake at the same time.
Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
Answer:
The unit of charge is the Coulomb (C), and the unit of electric potential is the Volt (V), which is equal to a Joule per Coulomb (J/C).
Explanation:
Complete Question
You are performing a double slit experiment very similar to the one from DL by shining a laser on two nattow slits spaced meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are Ï out of phase with each other (that is to say, Ao,- ). If you observe that on a screen placed 4 meters from the two slits that the distance between the bright spot closest to center of the pattern is 1.5 cm, what is the wavelength of the laser?
Answer:
The wavelength is
Explanation:
From the question we are told that
The distance of slit separation is
The distance of the screen is
The distance between the bright spot closest to the center of the interference is
Generally the width of the central maximum fringe produced is mathematically represented as
=>
=>
=>