Answer:
The pressure exerted by the brick on the table is 18,933.3 N/m².
Explanation:
Given;
height of the brick, h = 0.1 m
density of the brick, ρ = 19,300 kg/m³
acceleration due to gravity, g = 9.81 m/s²
The pressure exerted by the brick on the table is calculated as;
P = ρgh
P = (19,300)(9.81)(0.1)
P = 18,933.3 N/m²
Therefore, the pressure exerted by the brick on the table is 18,933.3 N/m².
Answer:
86.51° North of West or 273.49°
Explanation:
Let V' = velocity of boat relative to the earth, v = velocity of boat relative to water and V = velocity of water.
Now, by vector addition V' = V + v'.
Since v' = 6.10 m/s in the north direction, v' = (6.10 m/s)j and V = 100 m/s in the east direction, V = (100 m/s)i. So that
V' = V + v'
V' = (100 m/s)i + (6.10 m/s)j
So, we find the direction,Ф the boat must steer to from the components of V'.
So tanФ = 6.10 m/s ÷ 100 m/s
tanФ = 0.061
Ф = tan⁻¹(0.061) = 3.49°
So, the angle from the north is thus 90° - 3.49° = 86.51° North of West or 270° + 3.49° = 273.49°
The question is asking to calculate the tension that the string has to adjust the string so that when vibrating in its second overtone, it produces sound of wavelength of 0.761m, base on my calculation, the calculation must be done by the formula of <span>v=λf</span><span>., I hope this would help </span>
<span>The particles in a gas are apart and moving fast, so the forces of attraction are too weak to have a noticeable effect.</span>