Answer: 80J
Explanation:
According to the first principle of thermodynamics:
<em>"Energy is not created, nor destroyed, but it is conserved." </em>
Then this priciple (also called Law) relates the work and the transferred heat exchanged in a system through the internal energy
, which is neither created nor destroyed, it is only transformed. So, in this especific case of the compressed gas:
(1)
Where:
is the variation in the internal (thermal) energy of the system (the value we want to find)
is the heat transferred out of the gas (that is why it is negative)
is the work is done on the gas (as the gas is compressed, the work done on the gas must be considered positive )
On the other hand, the work done on the gas is given by:
(2)
Where:
is the constant pressure of the gas
is the variation in volume of the gas
In this case the initial volume is
and the final volume is
.
This means:
(3)
Substituting (3) in (2):
(4)
(5)
Substituting (5) in (1):
(6)
Finally:
This is the change in thermal energy in the compression process.
Answer:
The speed of the water shoot out of the hole is 20 m/s.
(d) is correct option.
Explanation:
Given that,
Height = 20 m
We need to calculate the velocity
Using formula Bernoulli equation

Where,
v₁= initial velocity
v₂=final velocity
h₁=total height
h₂=height of the hole from the base
Put the value into the formula




Hence, The speed of the water shoot out of the hole is 20 m/s.
La respuesta es la letra b
Answer:
(a)0.0002778
(b)
Explanation:
(a) The minute hand has a period of 60 minutes ( or 60 * 60 = 3600 seconds) for 1 circle. Its frequency per second would be
1 / 3600 = 0.0002778
(b) The hour hand has a period of 24 hours ( or 24*60 * 60 = 86400
seconds) for 1 circle. Its frequency per second would be
