Answer:
Explanation:
a) the speed increment of the hammer as it drops past the first window, is greater than that of the speed of the hammer as it drops past the second window. This can also be translated as saying that the hammer spent more time at the second window.
b) III
The best answer would be answer III, The hammer spends more time dropping past window 1, which I had already included in my explanation in (a) above.
Answer:
1.56 J
Explanation:
The potential energy only depends on the vertical height from the ground level.
We consider the ground level to have zero P.E.
So when it is 2 m above the ground level,
P.E. = mgh
= 0.078×10×2
= 1.56 J
Atomic mass is the mass of an atom, particle, or molecule. The atomic mass is determined by the number of protons and neutrons in the atom. For example, Oxygen has 8 protons (as seen by the atomic number) and 8 neutrons which gives oxygen an atomic mass of 16.
The Force per meter on a straight wire carrying current in a magnetic field is<u> 0.045 N/m.</u>
<u>Calculation:-</u>
F/ℓ = B I sin θ
Where B – Magnetic field = 0.02 T I – Current = 5 A
Substituting the values
F/ℓ = (0.02) (5) (sin 27 deg)
F/ℓ = <u>0.045 N/m</u>
A force is an influence that can alternate the motion of an item. A force can cause an item with mass to trade its pace, i.e., to boost up. force can also be described intuitively as a push or a pull. A pressure has both value and course, making it a vector quantity.
The push or pull on an item with mass causes it to change its velocity. force is an external agent capable of converting a frame's nation of relaxation or motion. It has significance and a path. A force is a push or pulls among gadgets. it is called an interplay because if one object acts on some other, its movement is matched with the aid of a reaction from the alternative object.
Learn more about force here:-brainly.com/question/12970081
#SPJ4
Energy to lift something =
(mass of the object) x (gravity) x (height of the lift).
BUT ...
This simple formula only works if you use the right units.
Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters
For this question . . .
Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms
Gravity (on Earth) = 9.8 m/second²
Height = 500 cm = 5.0 meters
So we have ...
Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)
= 2,696,925 joules .
That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.
The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.