Answer:
Velocity, u = 14.7 m/s
Explanation:
It is given that, a driver can probably survive an acceleration of 50 g that lasts for less than 30 ms, but in a crash with a 50 g acceleration lasting longer than 30 ms, a driver is unlikely to survive.
Let v is the highest speed that the car could have had such that the driver survived. Using a = -50 g and t = 30 ms
Using first equation of kinematics as :

In case of crash the final speed of the driver is, v = 0
u = 14.7 m/s
So, the highest speed that the car could have had such that the driver survived is 14.7 m/s. Hence, this is the required solution.
Hey there!:
That depends on the pH of the water layer. If the water layer is basic or rather just not acidic, it will be in the water layer. If the water layer is acidic, pH 4 or less, it will be in the ether layer. On the question of upper and lower, either has a density of less than one so it will be the upper layer.
The molar mass of C6H12O6 is 180.1548 g/mol. The molar mass of C6 is 72.06 g/mol. So you divide the molar mass of C6 by the molar mass of C6H12O6 and multiply it by 100: (72.06g C6/180.1548g C6H1206)x100= .3999 x 100= 39.99% Carbon in glucose (40% rounded)
Waves are made formed from the tide, and are forces of water