Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L
Answer:
- The chemical reaction is not balanced. There is two oxygens on the reactant's side while there's only one oxygen on the products side.
- I would not say it's following the law of conservation of mass as it's not a balanced equation.
- To balance this equation, you would need to add the coefficient of '2' to Magnesium (Mg) on the reactants side, and add the coefficient of '2' to the products side. This would make it so that there's 2 Mg's and 2 O's on both the reactant's side and products side.
edit: I hope this helped you in some way. ^^
Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Answer:
Carbon Tetrachloride
Explanation:
1 Carbon atom, 4 chlorine atoms (hence "tetra" prefix)
According to Balance chemical equation,
N₂ + 3 H₂ → 2 NH₃
1 mole of Nitrogen reacts with 3 moles of Hydrogen to produce 2 mole of Ammonia.
It is known that i mole of any gas at standard temperature and pressure occupies 22.4 L of Volume. So, we can also say,
22.4 L (1 × 22.4) of Nitrogen gas (in question it is taken in excess) reacts with 67.2 L (22.4 × 3) of Hydrogen gas to produce 44.8 L (22.4 × 2) of Ammonia.
Result:
44.8 L is the correct answer.