Explanation:
Methane molecule is depicted here
<u>Answer:</u> The new volume of the gas is 0.11 L
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
At STP:
The temperature at this condition is taken as 273 K and the pressure at this condition is taken as 1 atm or 101.3 kPa.
We are given:

Putting values in above equation, we get:

Hence, the new volume of the gas is 0.11 L
As the reaction speed involves the overcoming of the activation energy (due to a required amount of kinetic energy between the particles). When temperature is increased it will provide more energy for the movement of the particles to gain more kinetic energy meaning the rate at which the particles interact increase
Answer:
0.702 /s
Explanation:
Rate constant at 
Rate constant at 


Activation energy, 
Use the following equation to calculate
Use the following equation to calculate
Therefore,
![\ln \left(\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}}\right) &=\frac{50.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}}\left[\frac{1}{298 \mathrm{~K}}-\frac{1}{350 \mathrm{~K}}\right]](https://tex.z-dn.net/?f=%5Cln%20%5Cleft%28%5Cfrac%7BK_%7B2%7D%7D%7B3.46%20%5Ctimes%2010%5E%7B-2%7D%20%5Cmathrm%7B~s%7D%5E%7B-1%7D%7D%5Cright%29%20%26%3D%5Cfrac%7B50.2%20%5Ctimes%2010%5E%7B3%7D%20%5Cmathrm%7B~J%7D%20%2F%20%5Cmathrm%7Bmol%7D%7D%7B8.314%20%5Cmathrm%7BJK%7D%5E%7B-1%7D%20%5Cmathrm%7B~mole%7D%5E%7B-1%7D%7D%5Cleft%5B%5Cfrac%7B1%7D%7B298%20%5Cmathrm%7B~K%7D%7D-%5Cfrac%7B1%7D%7B350%20%5Cmathrm%7B~K%7D%7D%5Cright%5D)
![\ln \left(\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}}\right) &=\frac{50.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}}\left[\frac{52 \mathrm{~K}}{298 \mathrm{~K} \times 350 \mathrm{~K}}\right]](https://tex.z-dn.net/?f=%5Cln%20%5Cleft%28%5Cfrac%7BK_%7B2%7D%7D%7B3.46%20%5Ctimes%2010%5E%7B-2%7D%20%5Cmathrm%7B~s%7D%5E%7B-1%7D%7D%5Cright%29%20%26%3D%5Cfrac%7B50.2%20%5Ctimes%2010%5E%7B3%7D%20%5Cmathrm%7B~J%7D%20%2F%20%5Cmathrm%7Bmol%7D%7D%7B8.314%20%5Cmathrm%7BJK%7D%5E%7B-1%7D%20%5Cmathrm%7B~mole%7D%5E%7B-1%7D%7D%5Cleft%5B%5Cfrac%7B52%20%5Cmathrm%7B~K%7D%7D%7B298%20%5Cmathrm%7B~K%7D%20%5Ctimes%20350%20%5Cmathrm%7B~K%7D%7D%5Cright%5D)




hence, the rate constant at
is 0.702