Answer:
Oxides are chemical compounds with one or more oxygen atoms combined with another element (e.g. Li2O). Oxides are binary compounds of oxygen with another element, e.g., CO2, SO2, CaO, CO, ZnO, BaO2, H2O, etc. These are termed as oxides because here, oxygen is in combination with only one element.
Explanation:
Answer:
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
Explanation:
Main reaction: 2Ag⁺(aq) + Mn(s) ⇄ 2Ag(s) + Mn²⁺(aq)
In the oxidation half reaction, the oxidation number increases:
Mn changes from 0, in the ground state to Mn²⁺.
The reduction half reaction occurs where the element decrease the oxidation number, because it is gaining electrons.
Silver changes from Ag⁺ to Ag.
1. The oxidation half-reaction is: Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
2. The reduction half-reaction is: Ag⁺(aq) + 1e⁻ ⇄ Ag(s)
To balance the hole reaction, we need to multiply by 2, the second half reaction:
Mn(s) ⇄ Mn²⁺(aq) + 2e⁻
(Ag⁺(aq) + 1e⁻ ⇄ Ag(s)) . 2
2Ag⁺(aq) + 2e⁻ ⇄ 2Ag(s)
Now we sum, and we can cancel the electrons:
2Ag⁺(aq) + Mn(s) + 2e⁻ ⇄ 2Ag(s) + Mn²⁺(aq) + 2e⁻
Answer:
Photosynthesis converts carbon dioxide and water into oxygen and glucose. Glucose is used as food by the plant and oxygen is a by-product. Cellular respiration converts oxygen and glucose into water and carbon dioxide. Water and carbon dioxide are by- products and ATP is energy that is transformed from the process.
Answer:
Likely to gain electrons
Explanation:
The atom shown is likely to gain additional electrons to complete its electronic configuration.
- Since this is a neutral specie, the number of protons and electrons are the same.
- The atom has 16 electrons
- the number of valence electrons is 6
- If the atom gains two additional electrons, the octet configuration is attained
- Also, the atom can lose 6 electrons to become an octet
The atom will prefer to gain additional 2 electrons to give an octet configuration.
Answer:
1.0 L
Explanation:
Given that:-
Mass of
= 
Molar mass of
= 64.099 g/mol
The formula for the calculation of moles is shown below:

Thus,


According to the given reaction:-

1 mole of
on reaction forms 1 mole of 
0.0396 mole of
on reaction forms 0.0396 mole of 
Moles of
= 0.0396 moles
Considering ideal gas equation as:-

where,
P = pressure of the gas = 742 mmHg
V = Volume of the gas = ?
T = Temperature of the gas = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
R = Gas constant = 
n = number of moles = 0.0396 moles
Putting values in above equation, we get:

<u>1.0 L of acetylene can be produced from 2.54 g
.</u>