Answer:
The velocity could be in any direction, but the acceleration is in the direction of the resultant force.
Explanation:
The ball (assuming that we can treat it as a point mass) must obey Newton's 2nd Law, that states that the acceleration produced by a force, is proportional to the applied force, being the mass the proportionality constant.
As the force is the vector, and the mass an scalar, the acceleration vector must be in the same direction as the force vector.
Velocity, instead, can be in any direction: When an object is speeding up is in the same direction as the acceleration, while if it is slowing down, it has just the opposite.
Answer:
this is the anwser
Explanation:
The oddball spiral galaxy, called Messier 66, is one-thirdof the Leo Triplet, a group of three interacting galaxies about 35 millionlight-years from Earth (a light-year is the distance light can cover in ayear).
The mass of the quarterback is 61.2 kg.
Explanation:
mass of the football player = m1 = 102 kg
mass of the quarterback = m2 = ?
velocity of the football player = v1 = 8 m/s
According to the law of conservation of momentum:
The total momentum of a system before and after the collision remains constant. Assuming the situation as an isolated system which is not affected by any external factors, we have:
m₁v₁ + m₂v₂ = (m₁+m₂)V
Here, we need to find m₂.
We assume that the quarterback is standing still when he is attacked by the football player so v₂ = 0 m/s
After the collision both of them fall to the ground with a velocity of 5 m/s so V = 5 m/s

Keywords: momentum, velocity, law of conservation of momentum
Learn more about Law of Conservation of Momentum from brainly.com/question/7538238
#learnwithBrainly
Answer:
The velocity of the leaf relative to the jogger is 5 m/s.
Explanation:
Given that,
Velocity of jogger wrt to the ground, 
velocity of leaf wrt the ground, 
We need to find the velocity of the leaf relative to the jogger. Let it is equal to V. So, it is given by :

So, the velocity of the leaf relative to the jogger is 5 m/s. Hence, this is the required solution.
Explanation:
the answers are the first 3.