Answer:
I don't think your appendix can explode because you ate too much honestly. It's not even possible to eat so much that your appendix explodes, and if you're feeling any pain it definitely isn't because your appendix is about to explode, believe me. Also you could just type it into the internet, that'd be a much faster solution.
Answer:

Explanation:
The net force exerted on the mass is the sum of tension force and the external force of gravity.

is the tension force.
is the force of gravity.

where
is the rope's radius from the fixed point.
From the net force equation above:

Hence the tension force is 6.046N
Answer:
19 N
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = 1.9 kPa
Length (L) = 10 cm
Force (F) =?
Next, we shall convert 1.9 KPa to N/m². This can be obtained as follow:
1 KPa = 1000 N/m²
Therefore,
1.9 KPa = 1.9 KPa × 1000 N/m² / 1 KPa
1.9 KPa = 1900 N/m²
Thus, 1.9 KPa is equivalent to 1900 N/m².
Next, we shall convert 10 cm to m. This can be obtained as follow:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Thus, 10 cm is equivalent to 0.1 m
Next, we shall determine the area of the square. This can be obtained as follow:
Length (L) = 0.1 m
Area of square (A) =?
A = L²
A = 0.1²
A = 0.01 m²
Thus, the area of the square is 0.01 m².
Finally, we shall determine the force that must be exerted on the sensor in order for it to turn red. This can be obtained as follow:
Pressure (P) = 1900 N/m²
Area (A) = 0.01 m²
Force (F) =?
P = F/A
1900 = F / 0.01
Cross multiply
F = 1900 × 0.01
F = 19 N
Therefore, a force of 19 N must be exerted on the sensor in order for it to turn red.
<h2>
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.</h2>
Explanation:
One period means time taken to complete one revolution.
In case of swings in one period time it travels the same position through two times.
Here we need to find how many times does the child swing through the swing's equilibrium position during the course of 3 period(s) of motion.
For 1 period = 2 times
For 3 periods = 3 x For 1 period
For 3 periods = 3 x 2 times
For 3 periods = 6 times
The child swing through the swing's equilibrium position 6 times during the course of 3 periods.