Answer:
it is defined as splitting up the given force into a number of components, without changing its effects on the body is called resolution of forces. A force is generally resolved along with two mutually perpendicular directions.
Explanation:
I belive it could be 6.5 but I could be wrong
Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
Answer:
I'm pretty sure the answer is C . since deciduous trees are trees that loose leaves seasonally and coniferous trees are trees that don't loose leaves seaosnally and survive through the winter.
Answer:
182 to 3 s.f
Explanation:
Workdone for an adiabatic process is given as
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
where γ = ratio of specific heats. For carbon dioxide, γ = 1.28
For an adiabatic process
P₁V₁ʸ = P₂V₂ʸ = K
K = P₁V₁ʸ
We need to calculate the P₁ using ideal gas equation
P₁V₁ = mRT₁
P₁ = (mRT₁/V₁)
m = 2.80 g = 0.0028 kg
R = 188.92 J/kg.K
T₁ = 27°C = 300 K
V₁ = 500 cm³ = 0.0005 m³
P₁ = (0.0028)(188.92)(300)/0.0005
P₁ = 317385.6 Pa
K = P₁V₁¹•²⁸ = (317385.6)(0.0005¹•²⁸) = 18.89
W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)
V₁ = 0.0005 m³
V₂ = 2.10 dm³ = 0.002 m³
1 - γ = 1 - 1.28 = - 0.28
W =
18.89 [(0.002)⁻⁰•²⁸ - (0.0005)⁻⁰•²⁸]/(-0.28)
W = -67.47 (5.698 - 8.4)
W = 182.3 = 182 to 3 s.f