t = 0.527 s
<u>It accelerates for 0.527 s.</u>
<u>Explanation:</u>
We use the formula:
v = u+at
Given:
v = 106 m/s
u = 0 (since no gravity)

So applying the formula,
v = u+at
106 = 0 + 201t
t = 106/201
t = 0.527 s
Answer:
120 N
Explanation:
F=ma therefore 60kg times 2m/s^2 is 120 N
Answer:
<em>Answer: (A) 0.75 m/s^2</em>
Explanation:
The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.
That acceleration is proportional to the net force and inversely proportional to the mass of the object.
It can be expressed with the formula:

Where
Fn = Net force
m = mass
The ice skater pushes against a wall with a force of 59 N. The wall returns the force and the skater now has a net force of Fn=59 N that makes him accelerate. Being m=79 kg the mass of the skater, the acceleration is:


Answer: (A) 0.75 m/s^2
The can be found elsewhere and as follows:
<span>A. of magnetic effects.
B. the ball tries to pull the rod’s electrons over to it.
C. the rod polarizes the metal.
D. the rod and the ball have opposite charges.
</span><span>
I believe the correct answer is option C. If a negatively charged rod is held near a neutral metal ball, the ball is attracted to the rod. this happens because </span>the rod polarizes the metal. Hope this answers the question.
<span> </span>For any prism-shaped geometry, the volume
(V) is assumed by the product of cross-sectional area (A) and height (h).
<span> V = Ah </span>
<span>
Distinguishing with respect to time gives the
relationship between the rates.
dV/dt = A*dh/dt</span>
<span> in the meantime the area is not altering </span>
<span>
dV/dt = π*(1 ft)^2*(-0.5 ft/min) </span>
<span>
dV/dt = -π/2 ft^3/min ≈ -1.571 ft^3/min
Water is draining from the tank at the rate of π/2
ft^3/min.</span>