Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Launch-capable countries
Order Country Satellite(s)
1 Soviet Union Sputnik 1
2 United States Explorer 1
3 France Astérix
4 Japan Ohsumi
10 more rows
Answer:
boron
aluminum
gallium
indium
thallium
Explanation:
Any of these could work. Nitrogen has 5 valence electrons so you just needed to pick an element that has 3 valence electrons that nitrogen could borrow. This periodic table shows valence electron counts:
Answer:
E
Explanation:
The police car is going to fast for the cop to hear and the same is with the speeder its who hears its highest pitch because it drives right past you and your not moving just standing on the cross walk
Answer:
You are exactly right. The molecules in hot air are moving faster than the molecules in cold air. Because of this, the molecules in hot air tend to be further apart on average, giving hot air a lower density. That means, for the same volume of air, hot air has fewer molecules and so it weighs less