Answer:
It will take the plant
days or 4.44 days to grow to a height of 200 inches tall.
Explanation:
From the question, the rate at which the species of the bamboo tree grows is 36 inches per day.
To determine how long it would take a plant 40 inches tall initially to grow at this rate (that is, 36 inches per day) to a height of 200 inches.
This means we will calculate the number of days it will take the plant to grow additional 160 inches ( 200 inches - 40 inches) at this rate.
Now,
If the plant grows 36 inches in 1 day
then it will grow 160 inches in x days
x = (160 inches × 1 day) / 36 inches
x = 160 / 36
x =
days or 4.44 days
Hence, it will take the plant
days or 4.44 days to grow to a height of 200 inches tall.
Answer:
a) v_average = 11 m / s, b) t = 0.0627 s
, c) F = 7.37 10⁵ N
, d) F / W = 35.8
Explanation:
a) truck speed can be found with kinematics
v² = v₀² - 2 a x
The fine speed zeroes them
a = v₀² / 2x
a = 22²/2 0.69
a = 350.72 m / s²
The average speed is
v_average = (v + v₀) / 2
v_average = (22 + 0) / 2
v_average = 11 m / s
b) The average time
v = v₀ - a t
t = v₀ / a
t = 22 / 350.72
t = 0.0627 s
c) The force can be found with Newton's second law
F = m a
F = 2100 350.72
F = 7.37 10⁵ N
.d) the ratio of this force to weight
F / W = 7.37 10⁵ / (2100 9.8)
F / W = 35.8
.e) Several approaches will be made:
- the resistance of air and tires is neglected
- It is despised that the force is not constant in time
- Depreciation of materials deformation during the crash
First we need to convert the angular speed from rpm to rad/s. Keeping in mind that


the angular speed is

And so now we can calculate the tangential speed of the child, which is the angular speed times the distance of the child from the center of the motion:
Ken jenr ewjk hfjek kwe hwlr herw hriehr jkwehrt
Acceleration = (change in speed) / (time for the change)
-- You said that the airplane has to speed up from zero ("sitting") to 40 m/s, so the change in speed is 40 m/s.
-- You said that it has to roll for 10 seconds to build up enough speed to take off, so the time for the change is 10 s .
Acceleration = (40 m/s) / (10 s)
Acceleration = (40/10) (m/s)/s
<em>Acceleration = 4 m/s²</em>
That seems like no problem. It's only like about 41% of 1 G . That would not even spill the drinks in First Class, or wake up the passengers who are already asleep (like me).