Answer:
Explanation:
more the density , more will be the buoyant force acting on it , less the density less will be the buoyant force acting on it. This is why people float in dead sea and sink in other seas
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4
The vertical weight carried by the builder at the rear end is F = 308.1 N
<h3>Calculations and Parameters</h3>
Given that:
The weight is carried up along the plane in rotational equilibrium condition
The torque equilibrium condition can be used to solve
We can note that the torque due to the force of the rear person about the position of the front person = Torque due to the weight of the block about the position of the front person
This would lead to:
F(W*cosθ) = mgsinθ(L/2) + mgcosθ(W/2)
F(1cos20)= 197/2(3.10sin20 + 2 cos 20)
Fcos20= 289.55
F= 308.1N
Read more about vertical weight here:
brainly.com/question/15244771
#SPJ1
Answer:
a) -2.516 × 10⁻⁴ V
b) -1.33 × 10⁻³ V
Explanation:
The electric field inside the sphere can be expressed as:

The potential at a distance can be represented as:
V(r) - V(0) = 
V(r) - V(0) =
₀
V(r) =
₀
Given that:
q = +3.83 fc = 3.83 × 10⁻¹⁵ C
r = 0.56 cm
= 0.56 × 10⁻² m
R = 1.29 cm
= 1.29 × 10⁻² m
E₀ = 8.85 × 10⁻¹² F/m
Substituting our values; we have:

= -2.15 × 10⁻⁴ V
The difference between the radial distance and center can be expressed as:
V(r) - V(0) = 
V(r) - V(0) = ![[\frac{qr^2}{8 \pi E_0R^3 }]^R](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bqr%5E2%7D%7B8%20%5Cpi%20E_0R%5E3%20%7D%5D%5ER)
V(r) = 
V(r) = 
V(r) 
V(r) = -0.00133
V(r) = - 1.33 × 10⁻³ V
Explanation:
It is given that,
The acceleration of the toboggan, 
Initial speed of the toboggan, u = 0
We need to find the distance covered by the toboggan. Using the second equation of motion as :

At t = 1 s


At t = 2 s


At t = 3 s


Hence, this is the required solution.