1.24973017189471 is probably the answer to your equation
Hey there!:
Volume in mL :
1.71 L * 1000 => 1710 mL
Density = 0.921 g/mL
Therefore:
Mass = Density * Volume
Mass = 0.921 * 1710
Mass = 1574.91 g
Answer:
Metallic bonding may be described as the sharing of free electrons among a lattice of positively charged metal ions. The structure of metallic bonds is very different from that of covalent and ionic bonds. While ionic bonds join metals to nonmetals, and covalent bonds join nonmetals to nonmetals, metallic bonds are responsible for the bonding between metal atoms.
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions. The electrons then move freely throughout the space between the atomic nuclei.
Explanation:
Essentially the term binary, meaning each different thing has two components. Binary ionic compounds have two ionic compounds, binary molecular compounds have two molecular compounds, and binary acids have two acids.
The answer is HCl, C3H6 and C2H5OH. Hydrochloric acid has the lowest boiling point among the three choices since it only has weak dipole-dipole and Van der Waal's forces between molecules which are much weaker than the forces of attraction present in propane and ethanol. Ethanol has the highest since the hydrogen bonding present in ethanol make it hard to break the bonds.