Answer:
c = 4
Explanation:
From work-energy theorem KE = workdone.
Given F = (cx - 3.00x²)i
W = ∫Fdx = ∫(cx - 3.00x²)dx = cx²/2 –3.00x³/3 + A
W = cx²/2 –x³ + A
Where A is a constant
At x = 0, KE = 20J
So W = 20J at x = 0
20 = c×0 - 0 +A
A = 20
So W = cx²/2 –x³ + 20
Also when x = 3.00m, W = KE = 11J
So
11 = c×3²/2 – 3³ + 20
11 = 4.5c – 7
4.5c = 11 + 7
4.5c = 18
c = 18/4.5 = 4
c = 4
Answer:
as fast as he wants, ladybugs are useless
The entropy change<span> of the surroundings is driven by heat flow and the heat flow determines the sign of ΔS</span>surr<span>. It can be calculated by the following expression:
</span>ΔSsurr = -(ΔH) / T
We calculate as follows:
ΔSsurr = -13200 / 1337 = 9.87 J/ K mol
Hope this answers the question. Have a nice day.
Answer:
The time taken to rotate the sphere one time is, t = 22 s
Explanation:
Given data,
The mass of the sphere, m = 8200 kg
The radius of the sphere, r = 90 cm
= .9 m
The force applied by the girl, F = 75 N
The moment of inertia of the sphere is,
I = 2/5 mr²
= (2/5) 8200 x (.9)²
= 2657 kg·m²
The torque,
τ = I α
75 x 0.9 = 2657 x α
α = 0.0254 rad/s²
The angular displacement,
θ = ½αt²
2π = ½ x 0.0254 rad/s² x t²
t = 22 s
Hence, the time taken to rotate the sphere one time is, t = 22 s
Mechanical waves transfer energy by including vibration in the propagation medium electromagnetic waves do not require a medium for propagation but still transfer energy by having an electric and magnetic field propagate perpendicular to one another. Hope this helps:)