The answer is d because you have to make sure that everything is right
Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :

Again using Snell's law for blue light as :

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
According to the given statement Final velocity when they stick together is 8.735i^ + 11.25j^
<h3>What is collision and momentum?</h3>
The unit of momentum is kg ms -1. Momentum is a vector parameter that is influenced by the object's direction. During collisions involving objects, momentum is a relevant concept. The final velocity before a collision between two objects equals the total motion after the impact (in the absence of external forces).
<h3>Briefing:</h3>
From conservation of momentum
Initial momentum = final momentum
m u +M U =(m+M) V
2000×25 i^ +1500×30 j^ =(2000+1500) V
V = 8.735i^ + 11.25j^
Final velocity when they stick together is 8.735i^ + 11.25j^
To know more about Collide visit:
brainly.com/question/27993473
#SPJ4
The complete question is -
A 2000 kg truck is moving eastward at 25 m/s. it collides inelastically with a 1500 kg truck traveling southward at 30 m/s. they collide at the intersection. Find the direction and magnitude of velocity of the wreckage after the collision, assuming the vehicles stick together after the collision.
Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.
Answer:
Because there is nothing out in space , the sound waves from one astronaut's whistling can't travel over to the other astronaut's ears.