Answer:
<h3>
C. 3</h3>
Explanation:
there are three electrons in a 2p sub-energy level of s neutral nitrogen atom.
Answer:
Kc = [C2H5OH]/{[C2H4][H2O]}
[H2O] = [C2H5OH]/{[C2H4] x Kc}
[H2O] = 1.69/(0.015 x 9.0 x 10^3) = 0.013 M
Explanation:
Kc is the equilibrium constant, it is egal to the product of the equilibrium concentration of the product dived by the product of the equilibrium concentration of the reactants.
with that formula and what is given, male the equilibrium concentration of H2O the subject of the formula and calculate its concentration by substituting given values.
According to this formula:
Q = M*C*ΔT
when we have M ( the mass of water) = 200 g
and C ( specific heat capacity ) of water = 4.18 J/gC
ΔT (the difference in temperature) = Tf - Ti
= 100 - 24
= 76°C
So by substitution:
Q = 200 g * 4.18 J/gC * 76 °C
= 63536 J
∴ the amount of heat which be added and absorbed to raise the temp from 24°C to 100°C is = 63536 J
Answer:
Subduction zone megathrust faults host Earth’s largest earthquakes, along with multitudes of smaller events that contribute to plate convergence. An understanding of the faulting behavior of megathrusts is central to seismic and tsunami hazard assessment around subduction zone margins. Cumulative sliding displacement across each megathrust, which extends from the trench to the downdip transition to interplate ductile deformation, is accommodated by a combination of rapid stick-slip earthquakes, episodic slow-slip events, and quasi-static creep. Megathrust faults have heterogeneous frictional properties that contribute to earthquake diversity, which is considered here in terms of regional variations in maximum recorded magnitudes, Gutenberg-Richter b values, earthquake productivity, and cumulative seismic moment depth distributions for the major subduction zones. Great earthquakes on megathrusts occur in irregular cycles of interseismic strain accumulation, foreshock activity, main-shock rupture, postseismic slip, viscoelastic relaxation, and fault healing, with all stages now being captured by geophysical monitoring. Observations of depth-dependent radiation characteristics, large earthquake slip distributions, variations in rupture velocities, radiated energy and stress drop, and relationships to aftershock distributions and afterslip are discussed. Seismic sequences for very large events have some degree of regularity within subduction zone segments, but this can be complicated by supercycles of intermittent huge ruptures that traverse segment boundaries. Factors influencing variability of large megathrust ruptures, such as large-scale plate structure and kinematics, presence of sediments and fluids, lower-plate bathymetric roughness, and upper-plate structure, are discussed. The diversity of megathrust failure processes presents a suite of natural hazards, including earthquake shaking, submarine slumping, and tsunami generation. Improved monitoring of the offshore environment is needed to better quantify and mitigate the threats posed by megathrust earthquakes globally.
Explanation:
The temperature dropped because B. energy was absorbed during the chemical reaction.
If energy was released, the temperature would rise. If there was no energy input, the temperature would stay the same. Since temperature dropped, it means that energy was absorbed.