Answer:
0.897 J/g°C
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass (M) of substance = 155g
Initial temperature (T1) = 25.0°C
Final temperature (T2) = 40°C
Change is temperature (ΔT) = T2 – T1 = 40°C – 25.0°C = 15°C
Heat Absorbed (Q) = 2085 J
Specific heat capacity (C) of the substance =?
Step 2:
Determination of the specify heat capacity of the substance.
Applying the equation: Q = MCΔT, the specific heat capacity of the substance can be obtained as follow:
Q = MCΔT
C = Q/MΔT
C = 2085 / (155 x 15)
C = 0.897 J/g°C
Therefore, the specific heat capacity of the substance is 0.897 J/g°C
Answer:
balanced;
unbalanced;
unbalanced;
balanced;
Explanation:
CaO + 3C → CaC2 + CO //all elements are balanced
Na + H2O → 2NaOH + H2 //Na is not balanced on the left
4Fe + O2 → 2Fe2O3 //O is not balanced on the left
2Mg + O2 → 2MgO //left is equal to right, balanced
Answer:
All description is given in explanation.
Explanation:
Van der Waals forces:
It is the general term used to describe the attraction or repulsion between the molecules. Vander waals force consist of two types of forces:
1. London dispersion forces
2. Dipole-dipole forces
1. London dispersion forces:
These are the weakest intermolecular forces. These are the temporary because when the electrons of atoms come close together they create temporary dipole, one end of an atom where the electronic density is high is create negative pole while the other becomes positive . These forces are also called induce dipole- induce dipole interaction.
2. Dipole-dipole forces:
These are attractive forces , present between the molecules that are permanently polar. They are present between the positive end of one polar molecules and the negative end of the other polar molecule.
Hydrogen bonding:
It is the electrostatic attraction present between the atoms which are chemically bonded. The one atom is hydrogen while the other electronegative atoms are oxygen, nitrogen or flourine. This is weaker than covalent and ionic bond.
Ionic bond or electrostatic attraction:
It is the electrostatic attraction present between the oppositely charged ions. This is formed when an atom loses its electron and create positive charge and other atom accept its electron and create negative charge.
Hydrophobic interaction:
It is the interaction between the water and hydrophobic material. The hydrophobic materials are long chain carbon containing compound. These or insoluble in water.
Covalent bond:
These compounds are formed by the sharing of electrons between the atoms of same elements are between the different element's atoms. The covalent bond is less stronger than ionic bond so require less energy to break as compared to the energy require to break the ionic bond.
Answer:
In units.
Explanation:
Such as newtons or pounds.
Answer:
There is a relationship between the strength of an acid (or base) and the strength of its conjugate base (or conjugate acid): The stronger the acid, the weaker its conjugate base. The weaker the acid, the stronger its conjugate base. The stronger the base, the weaker its conjugate acid.
explanation
The strength of an acid and a base is determined by how completely they dissociate in water. Strong acids (like stomach acid) break down or dissociate in water. Weak acids maintains their protons in water.