Answer:
1.73 M
Explanation:
Molarity is moles per liter, so we need to divide 7.47 moles by 4.31 liters to get the molarity of the solution.
7.47/4.31 ≈ 1.73 M
Answer:
the volume occupied by 3.0 g of the gas is 16.8 L.
Explanation:
Given;
initial reacting mass of the helium gas, m₁ = 4.0 g
volume occupied by the helium gas, V = 22.4 L
pressure of the gas, P = 1 .0 atm
temperature of the gas, T = 0⁰C = 273 K
atomic mass of helium gas, M = 4.0 g/mol
initial number of moles of the gas is calculated as follows;

The number of moles of the gas when the reacting mass is 3.0 g;
m₂ = 3.0 g

The volume of the gas at 0.75 mol is determined using ideal gas law;
PV = nRT

Therefore, the volume occupied by 3.0 g of the gas is 16.8 L.
It's an ionic bond! Potassium is a cation, or a metal with a positive charge, and fluoride is an anion, or a nonmetal with a negative charge.
A covalent bond is the bond between two nonmetals.
Hope this helped!
Answer:
2.00X10^5 x 20gNe/6.02x10^23=6.46x10^-18 but books answer is 797.
Explanation: